Module nujo.init.basic
Expand source code
from numpy import empty as np_empty
from numpy import full as np_full
from nujo.autodiff.tensor import Tensor
__all__ = [
'empty',
'full',
'ones',
'ones_like',
'zeros',
'zeros_like',
]
# ====================================================================================================
def empty(*shape: int, diff=False, name='Tensor[empty]') -> Tensor:
''' Return a new Tensor of given shape, without initializing entries.
'''
return Tensor(np_empty(shape), diff=diff, name=name)
def full(*shape: int,
fill_value=0,
diff=False,
name='Tensor[full]]') -> Tensor:
''' Return a new Tensor of given shape, filled with `fill_value`.
'''
return Tensor(np_full(shape, fill_value), diff=diff, name=name)
# ====================================================================================================
def ones(*shape: int, diff=False, name='Tensor[ones]') -> Tensor:
''' Return a new Tensor of given shape, filled with ones.
'''
return full(*shape, fill_value=1, diff=diff, name=name)
def ones_like(x: Tensor, diff=False, name='Tensor[ones]') -> Tensor:
return ones(*x.shape, diff=diff, name=name)
# ====================================================================================================
def zeros(*shape: int, diff=False, name='Tensor[zeros]') -> Tensor:
''' Return a new Tensor of given shape, filled with zeros.
'''
return full(*shape, fill_value=0, diff=diff, name=name)
def zeros_like(x: Tensor, diff=False, name='Tensor[zeros]') -> Tensor:
return zeros(*x.shape, diff=diff, name=name)
# ====================================================================================================
Functions
def empty(*shape: int, diff=False, name='Tensor[empty]') -> Tensor
-
Return a new Tensor of given shape, without initializing entries.
Expand source code
def empty(*shape: int, diff=False, name='Tensor[empty]') -> Tensor: ''' Return a new Tensor of given shape, without initializing entries. ''' return Tensor(np_empty(shape), diff=diff, name=name)
def full(*shape: int, fill_value=0, diff=False, name='Tensor[full]]') -> Tensor
-
Return a new Tensor of given shape, filled with
fill_value
.Expand source code
def full(*shape: int, fill_value=0, diff=False, name='Tensor[full]]') -> Tensor: ''' Return a new Tensor of given shape, filled with `fill_value`. ''' return Tensor(np_full(shape, fill_value), diff=diff, name=name)
def ones(*shape: int, diff=False, name='Tensor[ones]') -> Tensor
-
Return a new Tensor of given shape, filled with ones.
Expand source code
def ones(*shape: int, diff=False, name='Tensor[ones]') -> Tensor: ''' Return a new Tensor of given shape, filled with ones. ''' return full(*shape, fill_value=1, diff=diff, name=name)
def ones_like(x: Tensor, diff=False, name='Tensor[ones]') -> Tensor
-
Expand source code
def ones_like(x: Tensor, diff=False, name='Tensor[ones]') -> Tensor: return ones(*x.shape, diff=diff, name=name)
def zeros(*shape: int, diff=False, name='Tensor[zeros]') -> Tensor
-
Return a new Tensor of given shape, filled with zeros.
Expand source code
def zeros(*shape: int, diff=False, name='Tensor[zeros]') -> Tensor: ''' Return a new Tensor of given shape, filled with zeros. ''' return full(*shape, fill_value=0, diff=diff, name=name)
def zeros_like(x: Tensor, diff=False, name='Tensor[zeros]') -> Tensor
-
Expand source code
def zeros_like(x: Tensor, diff=False, name='Tensor[zeros]') -> Tensor: return zeros(*x.shape, diff=diff, name=name)