Module nujo.init.random
Expand source code
from numpy.random import rand as np_rand
from numpy.random import randint as np_randint
from numpy.random import randn as np_randn
from nujo.autodiff.tensor import Tensor
__all__ = [
'rand',
'randn',
'randint',
]
def rand(*shape: int, diff=False, name='Tensor[rand]') -> Tensor:
''' Random values in a given shape.
'''
return Tensor(np_rand(*shape), diff=diff, name=name)
def randn(*shape: int, diff=False, name='Tensor[randn]') -> Tensor:
''' Return a sample (or samples) from the "standard normal" distribution.
'''
return Tensor(np_randn(*shape), diff=diff, name=name)
def randint(*shape: int,
low=0,
high=100,
diff=False,
name='Tensor[randint]') -> Tensor:
''' Return random integers from low (inclusive) to high (exclusive).
'''
return Tensor(np_randint(low, high=high, size=shape), diff=diff, name=name)
Functions
def rand(*shape: int, diff=False, name='Tensor[rand]') -> Tensor
-
Random values in a given shape.
Expand source code
def rand(*shape: int, diff=False, name='Tensor[rand]') -> Tensor: ''' Random values in a given shape. ''' return Tensor(np_rand(*shape), diff=diff, name=name)
def randint(*shape: int, low=0, high=100, diff=False, name='Tensor[randint]') -> Tensor
-
Return random integers from low (inclusive) to high (exclusive).
Expand source code
def randint(*shape: int, low=0, high=100, diff=False, name='Tensor[randint]') -> Tensor: ''' Return random integers from low (inclusive) to high (exclusive). ''' return Tensor(np_randint(low, high=high, size=shape), diff=diff, name=name)
def randn(*shape: int, diff=False, name='Tensor[randn]') -> Tensor
-
Return a sample (or samples) from the "standard normal" distribution.
Expand source code
def randn(*shape: int, diff=False, name='Tensor[randn]') -> Tensor: ''' Return a sample (or samples) from the "standard normal" distribution. ''' return Tensor(np_randn(*shape), diff=diff, name=name)